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Replication Code

All replication code will for the figures in the main text and all figures and tables in the

online appendix will be deposited in accoradance with the journal’s guidelines.

Encoding Models

A review of encoding models is beyond the scope of this paper. Nevertheless, I clarify a few

points here to provide context for the sentence-encoder presented in the main text.

Word-Encoders

Initially, encoding models operated on words, transforming each word or token into high-

dimensional vectors in such a way that their proximity in the embedding space reflected some

set of shared semantic properties, e.g., Word2Vec (Mikolov et al. 2013). Political scientists

have used word-level embeddings to estimate the political stances of Twitter users (Mebane Jr

et al. 2018); to infer ideological placement of parliamentary members (Rheault and Cochrane

2020); to assess the negativity in parliamentary speeches (Rudkowsky et al. 2018); and to

understand the influence of partisanship on word usage (Rodriguez, Spirling, and Stewart

2021).

Word-level embeddings have their limitations, however. For example, word-level models

have difficulty handling negation, an essential aspect of deriving meaning from a sentence

(X. Zhu, Li, and de Melo 2018). Word-encoding models also generate static embeddings

that are a function of the data on which they are trained. Yet human language is flexible

and word meaning is not static. Human judgments of semantic similarity accommodate this

fluidity; word-level embeddings do not. Rodriguez, Spirling, and Stewart (2021) illustrate

the challenge of static embeddings in interpreting the meaning of the word “society” without

sufficient context.

2



Sentence-Encoders

Sentence-encoders try to close the gap between a machine’s representation of language

meaning and a human’s. In particular, sentence-encoders try to capture enough of the

semantic properties of text strings that their representational space encodes meaning in a

way that humans recognize. While the models themselves are opaque, probes have shown

that they can encode syntactic and semantic information, as well as information about

entity types (Rogers, Kovaleva, and Rumshisky 2021). These models are evaluated by how

well they perform against the benchmark of human judgment across a range of tasks and,

secondarily, in their computational efficiency (e.g., Conneau and Kiela 2018). There have

been several step-changes in sentence-encoder performance on both of these dimensions (for

a review, see Luitse and Denkena 2021). For the purposes of this article, I simply note

that the state-of-the-art in sentence-encoder models share a particular design feature in that

they are Transformer-based1, and that the latest step-change in computational efficiency

came when Reimers and Gurevych (2019) introduced the Sentence-Bidirectional Encoder

Representations from Transformers (S-BERT). Reimers and Gurevych (2019)’s innovation

has generated an entire family of language models implemented in Python that are freely

available from https://huggingface.co/sentence-transformers.

The challenge for sentence-encoders is to learn how to represent (snippets of) human

language in a representational space that produces relationships that align well with human

estimates of those same relationships. The advantage of these models for social scientists –

and those who are new to computational tools in particular – is that all of this training is

done before the researcher interacts with the model. Nevertheless, it is worth noting why

these models can be used out-of-the-box.

Building a model of human language is an immense task requiring vast amounts of training
1The Transformer architecture was introduced in Vaswani et al. (2017) and demonstrated both a

performance and computational resource advantage over the prior generation of deep learning models, such
as Recurrent Neural Networks (RNNs) and Long-Term Short-Term Memory (LSTM) models.
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input, as well as a task or tasks against which to evaluate the model’s performance (e.g., Song

et al. 2020). While the details vary, training input is often billions of text snippets, either

from structured corpora (e.g., Y. Zhu et al. (2015)’s BookCorpus) or from unstructured

corpora (e.g., the Common Crawl). The tasks on which they are trained also vary, but include

predicting masked tokens or determining the probability of a subset of permuted tokens (Tan

2020). At this stage, these “base” language models can represent text in ways that retain

semantic structure and word-use context, but the representational space is not optimized to

reflect any particular kind of relationship between the texts.

These representations generated by these models can be further refined, however, by

training on specific tasks (Hill, Cho, and Korhonen 2016). Reimers and Gurevych (2019) note

that these tasks can include assessments of semantic similarity, multilingual translations, or

even returning answers to questions. The flexibility of these “base” models demonstrates that

they are good solutions to the transfer learning problem, which refers to the difficulty many

models have when performing outside the scope of their training task(s) (Azunre 2021). Thus,

although these “base” language models were only trained to predict missing or permuted

tokens, the representations they generate still contain rich semantic information that is more

generally useful.

The next stage of pre-training that a language model can undergo might be thought

of as the point at which the model learns “what goes with what.” This is the stage at

which the model’s representational space is optimized to reflect one (or more) types of

relationships between texts. In their initial formulation, Reimers and Gurevych (2019) noted

that these models could capture a variety of different meaning-based linguistic relationships.

For example, a model could be optimized for taking in a question and returning an answer. In

that case, the base model would be augmented by a last layer trained on corpora containing

pairs of questions and answers from WikiAnswers, Stack Exchange, or a number of other

sources.2 Alternatively, a model could be optimized for identifying most-similar sentences
2See Hugging Face’s Q&A models for examples.
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(i.e., semantic textual similarity). In that case, the last layer of the base model is trained

on a corpus of sentences annotated for an indicator of similarity, such as Stanford’s Natural

Language Inference dataset (Bowman et al. 2015). It is also possible to train models on

multiple tasks, generating representations that can be used for different objectives (semantic

search and semantic similarity, for example).

Additional layers can also be added to fine-tune a model’s representational space. Often

these layers are added based on benchmark tasks, such as the Semantic Textual Similarity

Benchmark dataset (Cer et al. 2017). On the one hand, fine-tuning reduces the generality of

the model’s representations. On the other, it optimizes those representations for a clearly

defined task.

Model Specifications

Language models are under constant development. Throughout this paper, I use the sentence-

encoder stsb-mpnet-base-v2, which is optimized for semantic textual similarity (Reimers

and Gurevych 2019). The base language model is Microsoft’s MPNet (Song et al. 2020) and

it was trained on semantic similarity using the Stanford Natural Language Inference dataset

(Bowman et al. 2015), then fine-tuned using the STS benchmark dataset (Cer et al. 2017).

stsb-mpnet-base-v2 embeds sentences into a 768-dimensional dense vector space and

encodes up to 75 tokens as its default. While the model can be adjusted to accommodate

longer strings, my own testing suggests that doing so reduces the model’s performance. I

suspect that forcing the model to vectorize texts that are much more complex than those on

which it was trained creates degrades the model’s representations somewhat.

Benchmarking

The most commonly used measure of the quality of a model’s assessments is the correlation

between the model’s similarity ratings and human similarity ratings. The Short Text
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Semantic Similarity benchmark dataset (O’Shea, Bandar, and Crockett 2014) provides a set

of human-coded similarity judgments that is ideally suited to evaluate the STS-trained model’s

performance. The dataset includes 64 sentence-pairs developed specifically for the purpose of

assessing NLP model performance in semantic similarity judgments.3 Each sentence-pair was

rated by 64 human subjects for similarity in meaning on a scale from 0 to 4. O’Shea, Bandar,

and Crockett (2014) reported the mean similarity rating for every sentence-pair, as well as

the performance of several NLP models.

I entered the 64 sentence-pairs into each of three sentence-encoders and retrieved their

embeddings. The three encoders were the STS-trained model (stsb-mpnet-base-v2), an

all-purpose model (all-mpnet-base-v2) using the same base language model (MPNet), and

an averaged word-level embeddings model (average-word-embeddings-glove6B300d). For

each sentence-pair, I then calculated the cosine similarity between the two embedding vectors

produced by a given model.

Reimers, Beyer, and Gurevych (2016) show that Spearman’s rank correlation is more

appropriate than Pearson’s correlation for comparing semantic similarity measures. However,

O’Shea, Bandar, and Crockett (2014) only reported results for their LSA model using

Pearson’s r. Thus, Table A1 reports Pearson’s correlation for the sake of comparability.

For the three encoding models shown in Table A1, the choice of Spearman’s ρ does not

meaningfully change the results: STS-trained model ρ = 0.915; all-purpose model ρ = 0.899;

GloVe model ρ = 0.821.

To put these correlations in perspective, it is worth considering the range of human inter-

rater correlations reported by the Comparative Manifestos Project and collected in Mikhaylov,

Laver, and Benoit (2012) (Table 1). These correlations range from 0.70 (within a group

of nine coders on their second CMP contract) to 0.88 (9 training coders versus the master

coding answers, on their second attempt). Both sentence-encoders perform well against these

reference points, though CMP rater tasks are for categorization, not semantic similarity
3None of these sentence-pairs were used in training or fine-tuning stsb-mpnet-base-v2.
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judgments per se.

Table A 1: Benchmarking Task for Similarity Estimates

Model Type Task

r vs.
Human
Ratings

stsb-mpnet-base-v2
(Hugging Face)

Sentence
encoder

STS-trained 0.912

all-mpnet-base-v2
(Hugging Face)

Sentence
encoder

All-purpose 0.907

Average GloVe
embeddings

Word
encoder

None 0.802

O’Shea et al. (2014)’s
LSA model

Latent
Semantic
Analysis

None 0.693

A second type of benchmarking task asks whether the STS-trained model can solve three

recognized “hard problems” in NLP. First, the model must be able to account for negation

(i.e., “X” and “not X” must be far apart in the embedding space). Second, the model must be

able to capture shared meaning between two sentences even if they do not share words. Third,

the model should pass the test of superficial similarity and detect a significant difference

when only one word has been altered, drastically changing the sentence’s meaning.

Despite their similar scores in the human rater correlation task, Figure A1 shows why an

STS-trained model (middle bar) is more promising than the all-purpose model (left bar) and

far better than a word-level encoder (right bar). The values in the figure result from running

the reference sentence and four target sentences through each encoding model, retrieving the

vectors of embeddings, and then calculating the cosine similarity for each sentence-pair.

As the figure shows, all models retain extremely high similarity scores for the first panel,

though the word-level model stumbles by identifying the sentences as identical. The STS-

trained model handles negation best (second panel) and the word-level model fails. The
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STS-trained model also correctly assigns a relatively high degree of similarity between two

sentences that share no words, but some meaning (third panel), and passes the test of

superficial similarity (fourth panel).
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Figure A 1: Sentence-Embedding Model Performance

In sum, the STS-trained model avoids established NLP pitfalls, which gives us greater

confidence in its similarity judgments.

Relative Semantic Similarity Derivation

If Category X is defined as a set of texts (sentences, paragraphs, or documents) whose

embeddings are represented by vectors x1, x2, ..., xn, and the cosine similarity of any two

vectors x1, x2 is denoted by Sx1,x2, then the pairwise similarities of all texts within Category

X, i.e., SimX , can be represented in a square, symmetric matrix of cosine similarities:

SimX =



Sx1,x1 Sx1,x2 · · · Sx1,xn

Sx2,x1 Sx2,x2 · · · Sx2,xn

... ... . . . ...

Sxn,x1 Sxn,x2 · · · Sxn,xn


(1)
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Within-category similarity, WX , is given by the mean of the row-wise averages of SimX ,

excluding the identity values. Thus, where i and j index rows and columns, respectively, so

that sij denotes the elements of SimX :

WX = 1
n(n − 1)

n∑
i=1

n∑
j ̸=i

sij (2)

If Category Y is defined as a set of sentence-length texts whose embeddings are represented

by vectors y1, y2, ..., yn, then the pairwise similarity for all texts in Categories X and Y,

SimXY , can be represented in a symmetric matrix of cosine similarities as well:

SimXY =



Sx1,y1 Sx1,y2 · · · Sx1,ym

Sx2,y1 Sx2,y2 · · · Sx2,ym

... ... . . . ...

Sxn,y1 Sxn,y2 · · · Sxn,ym


(3)

Between-category similarity, BXY , is given by the mean of the row averages of SimXY ,

which is an n row by m column matrix.

BXY = 1
n

n∑
i=1

1
m

m∑
j=1

sij (4)

The relative semantic similarity of Category X with respect to Category Y is thus the

difference score:

WBXY = WX − BXY (5)
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Workflow and Example

Figure A2 illustrates the workflow for calculating semantic similarity across a corpus. Steps

2-5 can be carried out entirely in R (R Core Team 2016) with an interface to a Python

installation (Van Rossum and Drake 2009), such as the reticulate package (Ushey, Allaire,

and Tang 2022).

Figure A 2: Raw Text to Similarity Workflow

Example R code for a minimal working example using this workflow will be available with

the replication materials. The MWE code includes guidance for Python requirements (version

3 or higher) and necessary modules.
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The Combatting Communism Corpus: Coding Examples

The CC Corpus contains 12,263 hand-coded paragraphs. Table A2 shows the distribution of

category assignments across these paragraphs.

Table A 2: CC Corpus Category Codings (Paragraph Level)

Category N Share (%)
0 11,020 89.86
1 122 0.99
2 470 3.83
3 368 3
Mixed 283 2.31

Table A3 shows the results of the permutation inference procedure used in Figure 1 of

the main text. The implied p-value refers to the probability of observing a value for WBXY

that is at least as large as the true value calculated from the original data when there is

no relationship between category assignments and semantic similarity. In the case of the

hand-coding scheme, there is less than a 1 in 500 chance that the true WBXY values are false

positives.

Table A 3: CC Corpus Category Permutation Results

WB_XY Permutations N Above Observed Implied P-Value
Category 1 v. 2 500 0 <0.002
Category 1 v. 3 500 0 <0.002
Category 2 v. 1 500 0 <0.002
Category 2 v. 3 500 0 <0.002
Category 3 v. 1 500 0 <0.002
Category 3 v. 2 500 0 <0.002

Table A4 shows the results of the permutation inference procedure used in Figure 2 of the

main text. In the case of secrecy status, there is a relatively high probability (p > 0.05) that

– in all cases – the differences observed between documents with different audiences are false
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positives.

Table A 4: CC Corpus Secrecy Status Permutation Results

WB_XY Permutations N Above Observed Implied P-Value
Never Class. v. Top Secret 500 40 0.08
Never Class. v. OTR 500 120 0.24
OTR v. Top Secret 500 169 0.34
OTR v. Never Class. 500 222 0.44
Top Secret v. Never Class. 500 227 0.45
Top Secret v. OTR 500 261 0.52

Table A5 provides example texts for each category.

Table A 5: CC Corpus Category Examples

Category Example Author
0 Second, in the economic field, not only must the

United States remain strong itself, but it must
realize that it is a pressing matter - again in
self-preservation - to do its utmost to make and keep
the entire free world strong. This means that our
economic policies must be realistic and vigorous. We
cannot afford outmoded slogans. We must produce
goods and we must ship goods abroad, and that
means granting credits and receiving imports. This
we must face squarely and act upon it.

Dean Acheson,
speech,
4/18/47,
paragraph 56

1 We in the United States follow our tradition in
continually seeking the truth, not only about
ourselves, but also about possible enemies –
particularly with regard to relative military strength.
This knowledge is essential if we are to assess our
chances of survival, because the Communist leaders
reiterate they cannot exist on the same planet with
the freedom loving Democratic nations.

W. Stuart
Symington,
speech,
4/12/50,
paragraph 45
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Category Example Author
2 In foreign countries Communists will, as a rule, work

toward destruction of all forms of personal
independence, economic, political or moral. Their
system can handle only individuals who have been
brought into complete dependence on higher power.
Thus, persons who are financially independent–such
as individual businessmen, estate owners, successful
farmers, artisans and all those who exercise local
leadership or have local prestige, such as popular
local clergymen or political figures, are anathema. It
is not by chance that even in USSR local officials are
kept constantly on move from one job to another, to
prevent their taking root in the local community.

George F.
Kennan, memo,
2/22/1946,
paragraph 62

3 But the strength of Communism is also its weakness
and worst enemy. The Communists, by fanatically
following the Marxist-Leninist philosophy, have
reversed life - they are attempting to create through
destruction, to gain victories by glorifying defeat. To
build a bright new world, they are degrading man,
taking from him, idea by idea, thought by thought,
attitude by attitude, the values of independent
reasoning and truth seeking. The very ingredients of
eventual success, intelligence, Judgment and moral
reserve, are being systematically and ruthlessly
denied him. In return, they infuse into him, idea by
idea, thought by thought, attitude by attitude, the
dialectics of materialism and secularism. The end
result of this alien reblooding of thousands of men
and women, is to create a Communist man - a
creature intellectually sterile, spiritually void and
oblivious to the realities of life. This creation,
Communist man, on whom the Communists depend
to conquer their future new world, is democracy’s
chief hope. This robot - thoughtless, lifeless and
senseless, eventually will be the shoal on which
Communism will flounder and die.

J. Edgar
Hoover, speech,
5/2/1950,
paragraph 12
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